
MODIS
SCIENCE DATA SUPPORT TEAM

PRESENTATION

March 13, 1992

lGENDA

.

‘.

,.

1.

Action Items

MODIS Airborne Simulator (MAS) Status

Cloud Optical Program

Guidelines for Algorithms

Schedule

ACTION ITEMS:

08/30/91 [Lloyd Carpenter and Team]: Draft a schedule of work
for the next 12 months. Include primary events and milestones,
documents to be produced, software development, MAS support, etc.
(Further modifications were made to the schedule.) STATUS :
Open. Due date 09/27/91.

12/06/91 [Liam Gumley]: Investigate a cataloging scheme for the
MAS data. Consider the Master Catalogue, PLDS and PCDS.
(Results of the investigation were included in the 02/14/92
handout. Review by the SDST was delayed.) STATUS : Open. Due
date 02/14/92.

12/06/91 [Liam Gumley, Tom Goff, Ed Masuoka]: Develop a plan for
storing and distributing MAS data. (The plan was included in the
02/14/92 handout. Review by the SDST was delayed.) STATUS :
Open. Due date 02/14/92.

01/03/92 [Team]: Check on the set of software engineering tools
available in Code 530 to see if any of these would be of use to
the SDST. (Discussions were held previously with Frank McGarry
of Code 530. Contacts were made with Joy Henegar, Stephanie
Nickens and Linda Sheckler of Code 563.2 in regards to use of
their PR:QA. The file dump algorithm and the cloud algorithm
were processed using PR:QA. There were many warning messages
which are being studied.) STATUS : Open. Due date 02/14/92.

01/17/92 [Tom Goff]: Have a polished version (with peer review)
of the file dump routine ready for the MODIS Science Team
Meeting. STATUS : Open. Due date 04/01/92.

02/21/92 [Ed Masuoka]: Talk to Code 930 and find out what tools
they have for porting data between computers from different
vendors. STATUS : Open. Due date 03/13/92.

02/21/92 [Lloyd Carpenter and Team]: Identify a list of risks
associated with porting Team Members’ algorithms to the PGS.
Prepare these for discussion at the Science Team Meeting.
STATUS : Open. Due date 04/01/92.

02/28/92 [Lloyd Carpenter]: Modify the SDST Schedule by adding a
“Concept Development” activity and adjusting the start time of
Team Member algorithm development. (The modified part of the
schedule is included in the handout.) STATUS : Open. Due date
03/13/92.

02/28/92 [Liam Gumley]: Develop a plan to accelerate MAS
processing using less of Liam’s time. STATUS : Open. Due date
03/20/92.

MODIS Airborne Simulator status Liam Gumlev)

Progress up to 12 March 1992

(1) MAS data processing status

Flight Area coverd Level-O data Processing INS offset
Date during flight received comDleted fixed

10/31/91
11/12/91
11/14/91
11/18/91
11/21/91
11/22/91
11/24/91
11/25/91
11/26/91
12/03/91
12/04/91
12/05/9 1
12/07/9 1

Ames test flight CA/NV
Ferry flight CA to TX
Coffeyville KS
Coffeyville KS
Coffeyville KS
Coffeyville KS
Gulf coast TX/LA
Coffeyville KS
Coffeyville KS
Gulf coast TX/LA
Gulf coast TX/LA
Coffeyville KS
Coffeyville KS

yes 3/3 tracb yes ‘
yes (subset) 1/1 tracks no
yes 16/16 tracks no
yes
yes
yes
yes
yes
yes
yes
yes
yes 29/29 tracks no
yes

11/16/91 Ground visible calibration yes 10481 scardines (no navigation)
11/20/91 Ground visible calibration yes 6078 scanlines (no navigation)
11/23/91 Ground visible calibration yes 10281 scanlines (no navigation)

Tom Arnold indicatd that the ground calibration datasets were of highest immediate interest,
so these were processed to the Level- lB stage. It was agrd that the most useful form of the
data would be to retain the Level-O instrument counts in the Level-lB dataset, rather than
calibrating to radiance units, since the data itself was to be used to generate calibration data.
~us it was decided to change the instrument configuration file CONFIG.ASC to indicate that
ALL channels were visible, and thus should use pre-defined slopes and intercepts (as opposed
to thermal channels calibrated from blackbody data). Since the radiances output in the Level-
lB dataset are scaled to integers by

integer Level- 1B radiance = nint(100.0 * real calibrated radiance)

the slope and intercept used for calibration were set to 0.01 and 0.0 respmtively, so that the
original instrument counts in each channel would be transferred to the Level-1B dataset. Also
sinm no navigation data existed for these MAS datasets, the code was modifid to allow
processing to Level-lB without navigation data. Variables in the Level-lB dataset reserved for
gmlocation da~ were filled with the value -999.99.

(2) MAS Level-lB netCDF file dump utility

A utility has been written that allows a brief summary of a MAS Uvel- lB flight track file to
be printed. The items printed were chosen from the list of items suggested as catalog entries
for the MAS flight track files. The code is written in portable FORTRAN-77 and
demonstrates how the netCDF library routines may be accessed through the FORTRAN
interface. The code has b~n compiled and tested on both Silicon Graphics Iris and DEC
VAX/VMS platforms, and has been included in the utility area of the MAS anonymous FTP

site. The following output shows the items printd for flight track 14 of the 05 D=mber
1991 MAS &IRE) flight. The system was the Silicon Graphics Iris.

% . . /util/masdump
Enter MAS Level-lB netCDF file name : 05dec91-14.cdf

MAS Level-lB flight line summary

Date
Start time
End time
Nominal heading
Nominal altitude
Number of scan lines
Start scan line number
End scan line number
Nominal BB1 temperature
Nominal BB2 temperature
Nadir start lat,lon
Nadir end lat,lon
Top left lat,lon
Bottom right lat,lon
Top left solar zen,azm
Bottom right solar zen,azm

%

05-DEC-1991
163853.00 hours
172241.00 hours
319 degrees
19809 meters
16326
49760
66130
-38.17 C
-0.31 c
29.282, -93.748 degrees
32.863, -97.008 degrees
29.388, -93.602 degrees
32.753, -97.156 degrees
55.837, 155.618 degrees
56.817, 164.181 degrees

(3) MAS image noise characterization/removal

Some preliminary work was done to investigate the nature of the coherent noise observed in
MAS image data. Instrument examination and tests at Ames have indicated that the noise
sourceis theMAS pod 400 Hz power and heater blowers (personal communication from Ken
Brown, GSFC 925). Imagery from the 31 October 1991 MAS test flight was analyzed to
check ifthis 400 Hznoisesignd was present.

The first region examined wasover the ocean offthe CA coast. AFFTwas performed onone
scanline of the image data from channe19(4.5 micron) and the results are plotted overleap. It
can be seen that a sharp amplitude peak exists at around 400 Hz, with smaller peaks evident at
approximately 1200 and2800 Hz.

The second region examined was over land in CA (mountains, no snow). This sp=trum
(plotted overlea~ shows a higher information content in the image, but the 400 Hz signal is
sti~ dominant.

It should be recognized that the 31 October 1991 flight was for the purposes of engineering
checkout, and Ames has since made modifications to the MAS to remedy these problems.
However some noise is still evident in FIRE science flight data, and a means of removing that
noise must be determined. At present, it appears that a two dimensional FFT approach would
be most useful. This is approach is being examined.

(4) MAS data distribution to the ASTER w

A phone inquiry was received horn Simon Hook (JPL ASTER Team) regarding the
availability of MAS data. It was explained that the data was currently available via FTP horn
GSFC. After obtaining Mike King’s go-ahead, an introductory document describing the MAS
data and instructions for retrieving it were emailed to Simon Hook
(SIMON@PLDSJl .JPL.NASA.GOV).

.—

Q

E
u

I:out-iet- s~ccII-(.IIm O(MA’..: 1 ,!”)0 (:rOII ~cunljne

.31 October 1991 tes[~llgtlt. over ocean

Frequencies f(j) from j=O to j=(n/2)+1 , n=71 6

6-I

o

1....-A. 1 l..

I I I

2000 4-000 6000
I I

8000 10(00

Frequency (Hz)

-u
0
N.—

Fouriet- spectrur-n of blAES 4.) rnif:ron scunlitne
31 October- 1991 test fligtnk over ocean
Frequencies f(j) from j=O to j=l 15, n=716

8 I

6-

—

4-

—
0{ I I I I I I 1 I 1 I I I

~ ~.
I I I I

~
I

0 400 800 1200 1600 2000 2400 2800

Frequency (Hz)

Fourier spectrum of MAS 4.50 Iic t-on scan line
31 October 1991 test flight over land
Frequencies f(j) from j=O to j=(n/2)+1 , n=71 6

8 I

a) J
52

0
(n

2

0
0 2000 4000 6000 8000 10000

Frequency (Hz)

(1)
-u
3

.—

u
a)
N.—

%

E
L

0
c

a)

I:ourier spectrut-r7 O(MAS> 4-.50 ;:licron scanline
31 October 1991 tes[fligl~i over land
Frequencies f(j) from j=O to j=l 15, n=716

8 I
J

—.

6-

4-

0

/

1

I i

0 400 800 1200 1600 2000 2400 2800

Frequency (Hz)
m

Cloud Optical Program and
Thomas E. Goff
12 March, 1992

tgoff on GSFC mail,
teg@ltpiris2.gsfc .nasa.gov,

or (301) 982-3704

* Cloud Optical Program Port, Continued - Mike King’s Cloud Optical Program (cldopt.~
is now ex=uting on the SGI ltp iris computer. The port of the execution phase of this
program was a~omplished by modifying the code to place the large data arrays that had
been placed into subroutine argument lists, into a common area. This was n=essary because
the SGI iris passes subroutine arguments by value instead of address and the large size of
these arrays was producing a stack over flow condition. In addition, all necessary variables
were explicitly set to zero upon program initiation. A related problem to uninitialized
variables is the use of volatile subroutine variables by default. If a variable that is declared
in a subroutine and used upon multiple entries to that subroutine, then there is no guarantee
that the value of the variable is retained upon subsequent calls. Variables must be declared
as type static to prevent their values from being changed when the subroutine is swapped to
disk and brought back into a different part of physical memory before being calld.

The original data set was designed to allow the program to terminate upon reading an EOF
horn the input data stream. The subroutine stubs that I wrote to interface the FTIO routines
into the UNIX disk structure detected the EOF condition but could not pass this back to the
FORTRAN calling routine via the FORTRAN error return extensions. The cldopt.f code
was modified to bypass this extension. The original program further confused it’s internal
vtiables which resulted in a termination due to a user specified IBM run time limit instead
of the normal programatical termination. This was corrected in the input data set to specify
only one run case instead of the original two plus runs. The IBM 3081 execution was
terminated by the operating system after 54 minutes of execution and produced two output
cases. The SGI iris executd one case in 3 minutes. This equates to an approximate order
of magnitude decrease in execution time on the iris when compared to the IBM 3081. The
output data set that is sent to unit 6 was compared for the IBM and SGI ins runs and is
identical.

This porting of the actual code took less than thrm days. However, the port of the data sets
took approximate y three weeks.

* MAS INS Data Plotting - Ihave a hacked program on the SGI ins that will read the MAS
*ins data files and produce an output file that can be usd as data to the PC based acrospin
program. This will produce a real-time display of the 3-D aircraft flight path for any of the
MAS flights that can be displayed, rotated, scaled, etc on any PC under user rd-time
mntrol. Although this plot can not be used for determining the straight line flight paths, it

*

&

&

&

&

&

&

can be used to visually determine the coincidence of the race track segments and any
elevation changes as the fuel load lightens. Ground coverage can be deduced from this
display plot. If access to the Apple Mackintosh MacSpin program can be made available,
I will be glad to provide a clone of the previous hack to produce MacSpin specific MAS
fight track data sets to those parties who have an interest.

~S Graphic Overlays - The MAS data has bwn ingested by the Khoros public domain
imaging program which has been installed on Virginia Kalb’s Sun 4. The data was ingested
via my subset program, available on our anonymous ftp site. This program was then
modified by Virginia to include a representation of the auxiliary data (lat-long, az-el, etc)
u a graphic overlay to the original data. When a better facility for obtaining hard copy of
these images is available, we will be able to produce quality assurance products to validate
the ground location and other ancillary data. Note that Khoros will only run in a computer
that has the X 11 rev 4 windowing facility. This capabili~ will be expanded, on a time.
available basis, to include softwar~ tools slanted toward the remote sensing

-- Miscellaneous --

VAX Cluster Modem Lines -53241 now appearstowork consistently.

disciplines.

UNIX Mail - The SGI mail facility succeeded in transferring mail to/from an outside
mmputer on the intemet.

SLIP Connection - I haverevision 3.5 of SUN’s PC-NFS installed on my PC. I will now
establish the procedures requird to connect to the GSFC NCCS slip server. This is a non-
standard implementation due to the existence of the Rohm switching system and may take
some time and patience to make fully functional.

FORTRAN Source Code Checking - I have a trial evaluation copy of FORTRAN-LI~
arriving by UPS which I would like to install on the SGI ltpiris2 computer. This software
requires the X 11 rev 4 windowing facility and can be installed when this facility is available.

Current Source Code Checking Facilities - We plan to be using the LINT and public
domain FTNCHEK programs to check our C and FORTR4N code for non-portable or
wasteful features. The LINT program on the ins complains of an undefined variable which
is defined by the operating system in the < stdio. h > include file. This needs to be exorcised
by SGI in the future.

It would be very useful, especially for the off-site pwple, to have a synopsis of the Itp
computer facility. This could include, but not be limited to, the following:

A list of the computers with the operating system type, the current revision level of
the operating system, and if a UNIX based system, which UNIX (BSD or AT&T)
was used as the basis for the vendor supplied UNIX clone. Also which windowing
or GUI is provided on the computers.

The physical location of the computers and what means of accessibility they have

10

(locked rooms, etc).

A list of available peripherals with locations and how to access these deviws ala help
files etc. This would include the location of post script, HP pcl, and HPGL devims;
and magnetic tape systems with density, format, and network or direct computer
access. How do we obtain image B/W or color hard mpies, and what software is
available for image format conversions?

A list of major software that is available on the various ltp computers. We have
interest in publishing tools, word processors and word processing translator
capabilities, image processing packages with a list of capabilities (classification
techniques, panable graphics overlays, user s~ifable translation equations, etc), data
representation tools (2 and 3-D plotting, contour plotting, FFT’s and similar
transforms), spreadsheet and simtiar columnar data translating programs and editors,
library tool kits for math and general data manipulation, etc.

A list of direct contacts for obtaining additional information on networking, operating
system and computer architectural problems, software usage, ftp sites, usenet
connections for public domain, shareware, and freeware programs, mmputer system
factory support (which systems are supportd, by whom, with what level of
response), etc.

c:\mdis\status. mp

11

DRAFT

MODIS Science Data Support Team (SDST)

Guidelines for MODIS Team Members Science Algorithms

MOD IS SDST MoDls\PLANs\TMAL GoGL. oo3
March 12, 1992

12

1 Introduction .

2 Readability .

3 Portability .

.

.

.

DRAFT

Table of Contents

. .

. .

. .

. .

. .

. .

4 Modularity/Cohesiveness

5 Testability

6 Maintainability

7 Documentation

8 Usage of Software Tools

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Appendix A: Software Code Evaluation Criteria

References:

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1

. 2

. 2

. 3

. 3

. 4

. 5

. 5

. 7

. 9

MODIS SDST

ii

MOD IS\PLANS\ TMALGOGL .003
March 12, 1992

1 Introduction

The objective of these guidelines is to facilitate the porting,

integration, testing, documentation, and maintenance of
algorithms for the generation of MODIS science data products on
an operational basis. The MODIS Science Data Support Team (SDST)
provides support for the development of the MODIS science data
processing system. The SDST will generate a plan for the
development, validation, integration, operational testin?f
documentation, maintenance, modification, and configuration
management of the MODIS science data processing algorithms.
These guidelines are designed to assist the MODIS Science Team
Members in preparing their algorithms for this process. The

evaluation criteria given in Appendix A are intended to provide a
check list for examining code to see if it is reasonably
consistent with good coding practices.

All MODIS science data processing algorithms to be ported to the
MODIS Team Leader Computing Facility (TLCF) and integrated into
the shell with other algorithms will be written in either the
Standard Fortran or Standard C programming language, without
extensions. Any exceptions should be brought to the attention of
the MODIS Team Leader and coordinated with the SDST.

The EOS Product Generation System (PGS) and the MODIS TLCF are
planned to run under the UNIX operating system. For MODIS

science algorithms which are developed and tested under a
different operating system, it is especially important that they
be written in terms of a small set of primitive operations for
accessing the environment. If the primitives can be implemented
on a UNIX system, then it should be possible to port the
algorithms to a UNIX system without great difficulty. This

process is especially important for algorithms developed under an
operating system other than UNIX.

The primary goal of these guidelines is to facilitate the
porting, integration, testing, documentation, and maintenance of

algorithms for the generation of MODIS science data products on
an operational basis. These guidelines must be consistent with
accepted good coding practices, but they are not intended to go
beyond the present purpose. Choice of style, computational
methods, etc. are left to the Science Team Members.

MODIS SDST MoDIs\PLANs\TMAL GoGL. oo3
March 12, 1992

14

2 Readability

Efficient porting, integration, testing, documentation, and
maintenance of algorithms depends heavily on being able to read
and understand the code (including the documentation) .

Ready

access to the originator is helpful but not sufficient. ‘ The code
must be written and documented so as to be read, understood, and
used by another person or group of people in a different
environment. Readability, or understandability, is a very

important criterion for successful implementation of MODIS
algorithms. Readability is dependent upon:

● good documentation

● meaningful naming of variables

. clear structure and logical flow, and

. appropriate modularization.

3 Portability

Portability is of primary concern in the case of MODIS science
algorithms which are developed in one environment and implemented
for production processing in a different environment. The degree

of concern increases with the degree of difference between the
two environments.

The best guideline is to adhere to standard FORTRAN or C, and
resist the temptation of system-dependent features.

Many portability problems are best avoided by specifying a small
set of primitive operations for accessing the environment.
Operating system dependencies are then confined to a small number
of procedures and functions, so the algorithm can be moved to any

system where the primitives can be implemented.

Special care must be taken to avoid problems associated with
differences in binary data files. Another concern is the change

in roundoff arising from differences in the bit-length of
floating point arithmetic in different computers.

MODIS SDST
MoDls\PLANs\TMALGoGL.oo3

March 12, 1992

15

DRAFT

4 Modularity/Cohesiveness

Complex algorithms can generally be separated in a logical way
into modules (subprograms) each of which does a single task.
When each module is cohesive, and the coupling between modules is
loose, the algorithm becomes more understandable, more testable,
more maintainable, and more easily documented. The aim is to
achieve a level of modularity which avoids the clutter of too
many relatively trivial modules, while keeping the individual
modules cohesive and comprehensible. Avoid combining several
functions together arbitrarily. Modules should generally be
limited in length to 1 or 2 pages.

5 Testability

The porting and integration process is not complete until the
algorithm has been successfully tested on the TLCF. These tests
should be consistent with testing done prior to delivery to the
SDST . All test data and test results must be included with the
delivery of the algorithm and documentation. The testing process
should include:

. testing all modules independently of the algorithm itself:

. . for reasonableness of results

. . against limiting cases with analytic solutions

. . against published results where possible

. . exercising every logical branch

. . for possible failure

. testing for invalid and implausible input variables in all
modules, no matter how unlikely it is that the module will
be used incorrectly, and

. provision of test drivers

. . Each algorithm should be distributed with comprehensive
test drivers that explore all of the major branches of
the algorithm.

MODIS SDST MoDls\PLANs\TMALGoGL .oo3
March 12, 1992

3

16

DRAFT

● ✎

● ☛

✎ ✎

✎ ✎

✎ ✎

✎ ✎

Test drivers should be developed with the same good
coding practices as the algorithm itself.

Test drivers should “failure-test” the model by pushing
it into regimes where trouble is expected.

~lcorrect answers” should be included in the driver
code.

A minimalist approach should be taken. There is no
need to generate large print-outs.

Each test case in the driver should be completely
independent of the others.

Test drivers should be critically evaluated in the same
way as the algorithms.

6 Maintainability

Considering the duration of the MODIS mission, all algorithms
will be subject to maintenance (changes, and updating) . The
maintenance process will be greatly simplified by using
forethought in the design and development of the algorithms.
Most of the guidelines addressed elsewhere in this document will
improve the maintainability of algorithms. Some additional—
considerations are:

. “Localize” the algorithm so that the range
any change is small.

.. Keep variables localized by assigning
values) close to the place where they

.. Keep the logic localized.

.. Within reason, use short modules that
through argument lists. Minimize the

of influence of

them (giving them
are used.

communicate only
use of alobal

variables, ‘COMMON blocks and EQUIVALENCE. “

. Strive for maximum generality so that fewer changes are
required.

● . Consider dimensioning all arrays with symbolic
constants.

MODIS SDST Mools\PLANs\TMA LGoGL. oo3

4
March 12, 1992

17

DRAFT

. . Use logical or integer flags in the argument sequence
to select among various options.

. . Concentrate system-dependent file manipulation, etc. in
a few well-chosen general modules that call low-level
primitives to do the work.

7 Documentation

Comments are interspersed throughout a module. Documentation, on

the other hand, occurs only at the beginning of a module. It is
specific, and it should be revised to reflect changes.

Completeness, not brevity, is the main consideration. The

documentation should, at a minimum, consist of:

. purpose of the module

. definition and units of the input and output variables

. description and units of the important internal variables

● method used, if applicable

● references to the literature

● notes and warnings (conscious design limitations) .

Thorough and complete input variable definitions and descriptions
are especially important. Units, type, dimensions, special
cases, upper and lower limits, usage examples, default valuesl
and interrelations ‘with other input variables should all be
provided.

8 Usage of Software Tools
.

Software tools are modules of modest size that:

. solve a general problem, not a special case;

. are nearly perfect, having gone through a considerable
shakedown process before being released; and

● are user-friendly enough that programmers will prefer them

MOOIS SDST MoDIs\PLANs\TMAL GoGL. oo3
March 12, 1992

5

18

to building their own.

The idea is to create more complex programs mainly by combining
tools in different ways. Tools can be divided into categories as
utility, numerical analysis, or scientific.

MOOIS SDST

6

MoDIs\PLANs\TMALGoGL .oo3
March 12, 195’2

19

Appendix A: Software Code Evaluation Criteria

This list of software code evaluation criteria is provided as a
suggested checklist for code review.

.

.

.

.

.

●

●

✎

✎

✎

✎

✎

●

✎

✎

●

Does each module have the standard prologue?

Does each module contain a single entry point and a single
exit point?

Are declarations and data statements placed after the
prologue and before the first executable statement?

Are literal constants not embedded in executable statements?

Do arguments in call statements not contain arithmetic or
logical expressions?

Has structured programming been utilized?

Are limit checks performed to ensure that variable contents
are within the expected range of values?

Are input defaults explicitly tested?

Are unique values of keywords checked?

Are constants defined? Are counters and parameters
initialized?

Are loop index parameters and array subscripts expressed
only as integer constants or integer variables?

Are variable names meaningful?

Do statement labels begin with a specified value and occur
in an obvious sequence?

Is the code designed to handle errors gracefully?

Are shared variables communicated as arguments whenever
practical to ensure program modularity?

Is code adequately commented and indented to show structure?

MODIS SDST MODIS\PLANS\TMALGOGL .003

7
March 12, 1992

20

DRAFT

●

✎

✎

●

●

✎

●

✎

✎

●

●

●

✎

✎

✎

Are data sets properly opened and closed?

Are flagged\missing data values correctly excluded from
calculations?

Is there a path defined for every possible outcome, of a
logical decision?

Are leading and trailing records recognized and handled
appropriately?

Are correct units or the appropriate conversion used?

Are the correct signs (positive or negative) used?

Are display formats large enough?

Are frequently utilized values stored after they are
calculated?

Are double-precision constants used in double-precision
expressions?

Is specified precision sufficient for required accuracy?

Is the level of nesting kept to a minimum?

Are possibilities for infinite loops avoided?

Are errors and associated error messages kept together?

Are functions and closed subroutines used only when they are
more efficient than in-line code?

Does the coded module satisfy the standard characteristics
of the implementation language, for example:

.. Is code logically blocked and indented?

.. Is there only one statement per line?

. . ‘Do variable names avoid the use of language keywords?

.. Are comments uniformly set-off from code?

.. Are all transfers of control and destinations
annotated?

MODIS SDST MOD] S\PLANS\ TMALGOGL .003

8
March 12, 1992

21

References:

Warren J. Wiscombe, “Principles of Numerical Modeling with
Examples from Atmospheric Radiation” 1989, unpublished.

Upper Atmosphere Research Satellite Software Assurance ‘
Recommendations Document, Version 3.0, NASA\GSFC, July 1989

MODIS SDST

9

MoDIs\PLANs\TMAL GoGL. oo3
March 12, 1992

22

92 93 94 95 96 97 98

1992 1 1993 ! 1994 I 1995 I 1996 I 1997 I 1998

FY
MOOIS Science Data Support Team (SDST) Schedule

CY
MOOIS SCIENCE ALGORITHMS

QTR

$
34

—

A

i

_

—

Concept Development

Team Leader Coding Guidei ines to Team Members -Am

— —

—

—

— —

. .

—

Shel 1

Peer Revieu of Team Member Algorithms

B Version Team Member A(gorithm Deve[o~ent (i terative) -

—. —

‘“[

—

—

‘ltnT
SDST Integrate

\

- –fm– w+
Q 4V1 stops

—

1
I 1 /9—

—

~ “- - ‘m- ‘
a AV2 stop

~ . - ‘_ : _ ,~~~ii

— —

A pre iaunch
— — — -freeze

A
——

II— —

—— —
A A A A

SDST Deliver and Test

Version 1 Team Member Algorithm Development (iterative)

SDST Integrate

SDST Deliver and Test

Version 2 Team Member Algorithm Deve(o~ent (i terative)

SDST Integrate

SDST Deliver and Test

Ed-to-End Test

First Post Launch Deve(o~ent

SDST Integrate Deliver and Test Post Launch ●

IAI AIA
Key External Mi testones

Notes: This scheduie assunes continuous interaction betueen ECS and SDST and that formal ECS reviews (SRR, PDR, CDR, etc.) are NOT the on(y avenue for information exchange.
Team members de(iver code, algorithmic tables arwf data sets, test data, test results, and documentation.

* Turnaround at SDST and ECS 1 - 2 ueeks. a First Delivery

MWI S\ PLANS\ GHANT .08c Page 1 March 5, 1992

